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Let R be a ring, G a finite group acting as automorphisms of R, and let RG 
denote the fixed ring of G on R. When [Cl, the order of G, is a unit in R, a number 
of facts are already known about the relationship between the primes of R and R”, 
and a‘bout when R is integral over R G [t&7,9,12]. In this note we show that some 
of th.ese results can be improved when R satisfies a polynomial identity (PI). 

We first consider integrality. If /G 1-i E R and G is abelian, D.S. Passman has 
shown that R is Schelter-integral over R G [ 121. This is false with no assumptions on 
1 G 1, even if R is a prime, affine, Noetherian PI ring [ 111. We prove here that if JR 
is a PI ring, and G is any finite group with IG 1-l E R, then ti is Schelter-integral 
over RG. 

‘We next consider prime ideals in RG, still under the assumption that j G ! -I E 1;!. 
Following [9], two primes p, q of R G are said to be equivalent if there exists a 
prime P of R such that p and q are both minimal over Pn R G. Various properties 
of this equivalence relation are known: equivalent primes have the same height [9] 
but not necessarily the same depth [7]. Also, the ‘additivity princ:~~le for Goldie 
ranks holds for primes in the extension R 3 RG [7]. We prove here that when R iis 

a PI ring, and p and q are equivalent primes, then RG/p and RGiq have the same 
Gelfand-Kirillov dimension. In the special case that R is also Noetherian and affine, 
it follows that p and q have the same depth, a fact that was ob:ierved by J. ‘4le b’ 
(private communication). As noted above, this is false in general. Moreover, we give 
an example of an affine Noetherian ring in which two equivali:nt primes hgw 
different depths. 

Finally, we consider prime ideals in the case when 1 G 1 is not ass?lmed to be a unil: . 
In particular, we consider a kind of incomparability question,: if 15 Q arc primes of 
R with Pf7RG=Qf7RG, must P and Q be in the same G-orbit .C Spec<a?)? Tbk 
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is known to be faise in general 171; we give here an example which shows it is false 
even for PI rings. However, if R is a semiprime PI ring, it is true if P and Q are 
identity faithful primes. 

1. lategrdity 

We recall the notion of Schelter integrality [ 151. For a ring S, S Un Z[X] denotes 
the coproduct (or free product) of S with the polynomial ring E[x]. Then the ring 
extension R 2 S is integral if for every r E R, there exists p,(x) E SUz a[.~] of the 
form p,(x) =x” + q(x), where q(x) has degree <n, so that p,(r) = 0. 

Lemma 1. Let S c R be a ring extension. If I, .I are ideals of R which art? integral 
over S, then If J is integral over S. 

Proof, The proof is essentially the same as for classical integrality: use (I + J)/Jz 
I/(InJ), which is integral over S, and substitution. 

Theorem 1. Let R be a PI ring and G a finite group o”f autmmor~hims with 
(G 1-l ER. Then R is integral over RG. 

Proof. By Lemma 1, R has an ideal K maximal with respect to K being integral over 
R”. For each g E G, the image Kg of K under g is also integral over R ‘; thus 
CREG Kg is integral over _@ G and contains K. By the maximality of K, it follows 
that K is G-stable. Moreover K is a semiprime ideal, for otherwise there exists an 
ideal NgX with N* c K; but then N would be integral over RG, a contradiction. 

By passing to R/K, we may therefore assume that R is semi&prime and has no non- 
zero ideals which are integral over R ‘. We now use a theorem of Amitsur [l] as 
stated by Rowen [14, Theorem 1.4.211, which says that LkR l R is integral (in the 
classical sense), over the center % of R, where dR denotes the subring of 2 gener- 
ated by evaluations of central polynomials. Now G acts on 2, which is integral over 
ZG; thus AR* R is integral over ZG C, R G. This contradicts our assumption that R 
has no integral ideals. Thus R =K, proving the theorem. 

2. Equivalent primes, GK-dimension, and depth 

As in Section 1, we assume that 1 G 1-I E R. Recall from [9] that for each equiva- 
lence class [p] of primes in Spec(R G), there is a unique G-orbit of primes { Pg} in 
R which determines the class; that is, Pf7 R’=(r:, PG)nRG=pl n-n np,,, 

where [PI = {pl, l , P,). 
For the definition and fundamental properties of Celfand-Kirillov (CK) dimen- 

sion, see [4]. 
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Theorem 2. Let R be a PI ring and G a finite group of autornorphisrns with 
(G 1-j E R. Jf p, -p2 in Spec(.R’), then GK-dim(R’/p,) I= GK-dim(R”/p,). 

Proof. Our argument is similar to the proof of the Theorem in 171. Let P E Spec(R 1) 

be as above so that (nR Rg)n RG=p, n -=- np,,. By passing to R/nr P g, wle may 
assume that R is semiprime Goldie and that n, pi = (0); then RG is also Goldie. 

Localizing, we have Q(R)z@& Q(R/fg), a sum of isomorphic copies of 
Q(R/P). Thus Q(R) is ‘GK-homogenous’ in the sense of Borlro [3], since allI right 
ideals have the same GK-dim as Q(R). Also, since Q(R) is semi-simple Artinian and 
IG/-’ E R, Q(R) is a finite modtile over Q(R)’ and Q(R)C;==Q(RG) [lo]. By a 
result of Borho [3, 56.71, it follows that the minimal primes of Q(R G ) have 1. he 
same G&dimension. But Q(RG) Z- @:; I Q(R’/pi), and so GK-dim Q(R”/pj) = 

GK-dim Q(RG/p2). Finally, since R is a PI ring, all the quotient rings above are 
obtained by central localization. Since GK-dim is preserved under central localiza- 
tion, it follows that GK-dim(R’/p,) = GK-dim(R”/Pz). 

We now obtain the result of Alev mentioned above, 

Corollary. Let R be a Noetherian PI algebra which is affine over a field k, md iet 
G be a finite group of automorphism of R with IG I-’ E I?. Then equivalent prirrm 
of KG have the same depth. 

Proof. Since R is N0etheria.n and affine, RG is also affine by a result 13 r’ zhe 
present authors [ 111, so R”/pi is an affine Pl-algebra. By a result of 3 I.-P. 
Malliavin [8], the GK-dim of RG,/pi is then equal to its classic:al Krull dimension. 
The corollary now follows from Theorem 2. 

The next example shows that the PI hypothesis is necessary. 

Example 1. An affine Noetherian ring R, with a group G of order L, with i 2 E R, 

but two equivalent primes in RG of different depths. 

Proof. Let A = k[x, y ] xy - yx = 11 be the first Weyl algeblra over a field k of charac- 
teristic 0. Let A = Ax, a left ideal, and let I7 = k + Ax. By [ 13,, Theorem 7.41, .l7 is 

(left) Noetherian. 
Now let 

R= 

that is, the subring of l&(A) with entries from the appropriate subrings of A. We 

claim that R is an affine, Noetherian k-algebra. R is Noetherian since it is a ~.i~~~~ 
(left and right) module over the diagonal /7@ A, and both ff and A are Noeth~ri~.n. 
To see that R is affine, *one can verify that the following elements generate R oh c 
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We also remark that n is affine this follows by [ll, Corollary l] since KJs 

WNl l 

Now let g be conjugation by (A _y); then g2 = 1, and letting G = {g), 

RG 
n Q 

= ( > 0 A 
SI7@A. 

Let p1 = (0, A) and let jp2 = (U, 0). Then p1 and p2 are primes of RG, and p1 -p2 

since they are both minimal over (0) = (0) n RG. Since A is simple, p2 is maximal. 
However pi is not maximal shce A is a proper ideal of PI. 

3. G-orbits of prime ideals 

For a commutative ring R, and any finite group G of automorphisms, it is well- 
known that if P, Q are primes in R with Pn RG = Q n R G, then Q = Pg for some 
ge G; an elementary proof appears in Bourbaki [S, Ch. 5, 92, Theorem 21. For non- 
commutative rings, this is false in general [7], although true if IG 1-l E R. We sketch 
a proof of this fact for completeness. Let A= ngsG Pg and B= ng.G Q”; then it 
suffices to show that A =B (for then each Pg contains some Qh and each Qh contains 
some Pk; as G is finite, repeating the procedure gives Q = Pg, some g). Say that -- - 
AcB; theninthesemiprimeringR=R/B,&O, but.AG=AnRG=BnRG=(0). 
This contradicts the theorem of Bergman and Isaacs [2]. Thus, when IG I-’ E R, G 
is transitive on t.he primes having a common intersection with RG. 

We note that although not explicitly stated, the above fact is implicit in [6]. 
When R is semiprime PI, something can be said even if IG I-’ & G. The next 

lemma acts as a substitute for the Bergman-Isaacs Theorem [2]. 

Lemma 2. Let R be semiprime PI and G finite. If I is a non-zero G-stable ideal of 
R, then InR’#(O). 

roof. I itself is a semiprime PI ring, and so has non-trivial center C [ 141. Now G 
acts on C, a commutative ring with no nilpotent elements; thus CG# 0, as C is 
integral over CG. But Cc c Zn RG. 

Recall that a prime P of R is identity-faithful if pi deg(R/P) = pi deg( R). 

3. Let R be a semiprime PI ring, G finite? and P, Q primes of R with 
P fl R G = Q n R ‘. Then P and Q are in the same G-orbit in either of the ,following 
situations: 

(1) Either P <jr Q is identity-faithful. 
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(2) P nRG=Qf7RC=(0). 
In the second situation, n, Pg = (0), and so R has 5 / G 1 rniuimai prunes. 

roof. As in the argument for the case of JG 1-l E R aibove, we let A = n,,,, P p 

and B = nfiEC QR; it suffices, to show A =& 
In case (2), this follows from Lemma 2: A and 61 are G-stable ideals with 

A nRG=BCRG=(0), and so A =B=(O). 
For case (l), assume that Q is identity-faithful. We use Amitsur’s result as in the 

proof of Theorem 1 to get that dA l A is integral over AC. Since AC = BG and B is 
an ideal, it follows that for any a wlA . A there exists rll >O with a” E B. But R/B 
is a semiprime PI ring, so has no non-zero nil ideals. Thus d,, l A 5 B C_ Q. Since Q 
is prime, either A c Q or J4 C_ Q. Now if Al SQ, then dA C_ Q and so in R/Q, a 
prime ring with the same p.i. degree as R, the image of Ai satisfies identities of lower 
degree, a contradiction. Thus A c Q. Since A is G-stable, 14 c n, Qg = B. 

Moreover, A = n Pg c Q implies that for some g, Pg c Q. But then P g, and so P, 
is also identity faithful. Repeating the above argument, we see B c A. Thus B = A 
and the theorem is proved. 

We do not know an example of a semiprime PI ring R, such tha.t for two primes 
P,Q with PnRG = Qn RG, P and Q are not in the same G-orbit. However, as the 
following example shows, this can fail when R is not semiprime, even when R is 
finite over its center. 

Example 2. A PI ring R, and finite group G, such thart R ha;;, LWO G-stable primes 
P,Q with Pf7RG=QnRG., 

Proof. We let k be a field of characteristic 2, and let A = k @ k. Identify k with the 
diagonal {(a, cr)} c A, and consider 

R= 

B 

R is certainly a finite module over its center. Let g be conjugation by (A A). Then 
if G = (g), 

RG = t(: %a,) 1 ut-k,asA]. 

Let 

p=(: ;,o)) and ‘=(i ;,k))’ 

Then p and Q are primes with Pn RG = L QnRG=(:;t). l:Ie>wever, Pg=P and 

Qg = Q. 
Note in this example that when we pass to R = R/N, where N is the nil radical. 

the induced action of G on R is trivial. Thus RG = R and i”f7 WG f 
the hypothesis on the primes is lost in homomorphic images. 



190 S. Montgomery, L. W. Small 

Note added in proof 

The Corollary to Theorem 2 has been improved in several ways. First, J. Alev has 
shown that it holds if R is an affine PI ring, not necessarily Noetherian, in “Sur 
l’extension R Gc+ R “, Comm. Algebra, to appear. 

Second, the present authors have realized that the conclusion of the Corollary 
holds if R is a Noetherian PI ring, not necessarily affine, by an argument similar 
to the proof of Theorem 2,, However, depth is not an equivalence relation for any 
PI ring with 1 G 1-l ER; this is seen by an example based on Example 1. The details 
of these two facts will appear in: S. Montgomery, “Group actions on rings: some 
classical problems”, Proceedings of Nato A.S.I. in Ring Theory, Antwerp, 1983. 
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